Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Making DeepFakes more spurious: evading deep face forgery detection via trace removal attack (2203.11433v1)

Published 22 Mar 2022 in cs.CV, cs.CR, and cs.MM

Abstract: DeepFakes are raising significant social concerns. Although various DeepFake detectors have been developed as forensic countermeasures, these detectors are still vulnerable to attacks. Recently, a few attacks, principally adversarial attacks, have succeeded in cloaking DeepFake images to evade detection. However, these attacks have typical detector-specific designs, which require prior knowledge about the detector, leading to poor transferability. Moreover, these attacks only consider simple security scenarios. Less is known about how effective they are in high-level scenarios where either the detectors or the attacker's knowledge varies. In this paper, we solve the above challenges with presenting a novel detector-agnostic trace removal attack for DeepFake anti-forensics. Instead of investigating the detector side, our attack looks into the original DeepFake creation pipeline, attempting to remove all detectable natural DeepFake traces to render the fake images more "authentic". To implement this attack, first, we perform a DeepFake trace discovery, identifying three discernible traces. Then a trace removal network (TR-Net) is proposed based on an adversarial learning framework involving one generator and multiple discriminators. Each discriminator is responsible for one individual trace representation to avoid cross-trace interference. These discriminators are arranged in parallel, which prompts the generator to remove various traces simultaneously. To evaluate the attack efficacy, we crafted heterogeneous security scenarios where the detectors were embedded with different levels of defense and the attackers' background knowledge of data varies. The experimental results show that the proposed attack can significantly compromise the detection accuracy of six state-of-the-art DeepFake detectors while causing only a negligible loss in visual quality to the original DeepFake samples.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.