Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning Confidence for Transformer-based Neural Machine Translation (2203.11413v1)

Published 22 Mar 2022 in cs.CL and cs.AI

Abstract: Confidence estimation aims to quantify the confidence of the model prediction, providing an expectation of success. A well-calibrated confidence estimate enables accurate failure prediction and proper risk measurement when given noisy samples and out-of-distribution data in real-world settings. However, this task remains a severe challenge for neural machine translation (NMT), where probabilities from softmax distribution fail to describe when the model is probably mistaken. To address this problem, we propose an unsupervised confidence estimate learning jointly with the training of the NMT model. We explain confidence as how many hints the NMT model needs to make a correct prediction, and more hints indicate low confidence. Specifically, the NMT model is given the option to ask for hints to improve translation accuracy at the cost of some slight penalty. Then, we approximate their level of confidence by counting the number of hints the model uses. We demonstrate that our learned confidence estimate achieves high accuracy on extensive sentence/word-level quality estimation tasks. Analytical results verify that our confidence estimate can correctly assess underlying risk in two real-world scenarios: (1) discovering noisy samples and (2) detecting out-of-domain data. We further propose a novel confidence-based instance-specific label smoothing approach based on our learned confidence estimate, which outperforms standard label smoothing.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.