Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 146 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Dense Siamese Network for Dense Unsupervised Learning (2203.11075v2)

Published 21 Mar 2022 in cs.CV and cs.AI

Abstract: This paper presents Dense Siamese Network (DenseSiam), a simple unsupervised learning framework for dense prediction tasks. It learns visual representations by maximizing the similarity between two views of one image with two types of consistency, i.e., pixel consistency and region consistency. Concretely, DenseSiam first maximizes the pixel level spatial consistency according to the exact location correspondence in the overlapped area. It also extracts a batch of region embeddings that correspond to some sub-regions in the overlapped area to be contrasted for region consistency. In contrast to previous methods that require negative pixel pairs, momentum encoders or heuristic masks, DenseSiam benefits from the simple Siamese network and optimizes the consistency of different granularities. It also proves that the simple location correspondence and interacted region embeddings are effective enough to learn the similarity. We apply DenseSiam on ImageNet and obtain competitive improvements on various downstream tasks. We also show that only with some extra task-specific losses, the simple framework can directly conduct dense prediction tasks. On an existing unsupervised semantic segmentation benchmark, it surpasses state-of-the-art segmentation methods by 2.1 mIoU with 28% training costs. Code and models are released at https://github.com/ZwwWayne/DenseSiam.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com