Papers
Topics
Authors
Recent
2000 character limit reached

Minimum Variance Unbiased N:M Sparsity for the Neural Gradients (2203.10991v3)

Published 21 Mar 2022 in cs.LG and cs.AI

Abstract: In deep learning, fine-grained N:M sparsity reduces the data footprint and bandwidth of a General Matrix multiply (GEMM) up to x2, and doubles throughput by skipping computation of zero values. So far, it was mainly only used to prune weights to accelerate the forward and backward phases. We examine how this method can be used also for the neural gradients (i.e., loss gradients with respect to the intermediate neural layer outputs). To this end, we first establish a tensor-level optimality criteria. Previous works aimed to minimize the mean-square-error (MSE) of each pruned block. We show that while minimization of the MSE works fine for pruning the weights and activations, it catastrophically fails for the neural gradients. Instead, we show that accurate pruning of the neural gradients requires an unbiased minimum-variance pruning mask. We design such specialized masks, and find that in most cases, 1:2 sparsity is sufficient for training, and 2:4 sparsity is usually enough when this is not the case. Further, we suggest combining several such methods together in order to potentially speed up training even more.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.