Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 138 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

STCGAT: A Spatio-temporal Causal Graph Attention Network for traffic flow prediction in Intelligent Transportation Systems (2203.10749v3)

Published 21 Mar 2022 in cs.LG and cs.AI

Abstract: Air pollution and carbon emissions caused by modern transportation are closely related to global climate change. With the help of next-generation information technology such as Internet of Things (IoT) and AI, accurate traffic flow prediction can effectively solve problems such as traffic congestion and mitigate environmental pollution and climate change. It further promotes the development of Intelligent Transportation Systems (ITS) and smart cities. However, the strong spatial and temporal correlation of traffic data makes the task of accurate traffic forecasting a significant challenge. Existing methods are usually based on graph neural networks using predefined spatial adjacency graphs of traffic networks to model spatial dependencies, ignoring the dynamic correlation of relationships between road nodes. In addition, they usually use independent Spatio-temporal components to capture Spatio-temporal dependencies and do not effectively model global Spatio-temporal dependencies. This paper proposes a new Spatio-temporal Causal Graph Attention Network (STCGAT) for traffic prediction to address the above challenges. In STCGAT, we use a node embedding approach that can adaptively generate spatial adjacency subgraphs at each time step without a priori geographic knowledge and fine-grained modeling of the topology of dynamically generated graphs for different time steps. Meanwhile, we propose an efficient causal temporal correlation component that contains node adaptive learning, graph convolution, and local and global causal temporal convolution modules to learn local and global Spatio-temporal dependencies jointly. Extensive experiments on four real, large traffic datasets show that our model consistently outperforms all baseline models.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.