Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Mitigating Gender Bias in Machine Translation through Adversarial Learning (2203.10675v1)

Published 20 Mar 2022 in cs.CL and cs.AI

Abstract: Machine translation and other NLP systems often contain significant biases regarding sensitive attributes, such as gender or race, that worsen system performance and perpetuate harmful stereotypes. Recent preliminary research suggests that adversarial learning can be used as part of a model-agnostic bias mitigation method that requires no data modifications. However, adapting this strategy for machine translation and other modern NLP domains requires (1) restructuring training objectives in the context of fine-tuning pretrained LLMs and (2) developing measures for gender or other protected variables for tasks in which these attributes must be deduced from the data itself. We present an adversarial learning framework that addresses these challenges to mitigate gender bias in seq2seq machine translation. Our framework improves the disparity in translation quality for sentences with male vs. female entities by 86% for English-German translation and 91% for English-French translation, with minimal effect on translation quality. The results suggest that adversarial learning is a promising technique for mitigating gender bias in machine translation.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.