Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniform weak error estimates for an asymptotic preserving scheme applied to a class of slow-fast parabolic semilinear SPDEs (2203.10600v1)

Published 20 Mar 2022 in math.NA, cs.NA, and math.PR

Abstract: We study an asymptotic preserving scheme for the temporal discretization of a system of parabolic semilinear SPDEs with two time scales. Owing to the averaging principle, when the time scale separation $\epsilon$ vanishes, the slow component converges to the solution of a limiting evolution equation, which is captured when the time-step size $\Delta t$ vanishes by a limiting scheme. The objective of this work is to prove weak error estimates which are uniform with respect to $\epsilon$, in terms of $\Delta t$: the scheme satisfies a uniform accuracy property. This is a non trivial generalization of a recent article in an infinite dimensional framework. The fast component is discretized using the modified Euler scheme for SPDEs introduced in a recent work. Proving the weak error estimates requires delicate analysis of the regularity properties of solutions of infinite dimensional Kolmogorov equations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)

Summary

We haven't generated a summary for this paper yet.