Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

End-to-End Human-Gaze-Target Detection with Transformers (2203.10433v2)

Published 20 Mar 2022 in cs.CV

Abstract: In this paper, we propose an effective and efficient method for Human-Gaze-Target (HGT) detection, i.e., gaze following. Current approaches decouple the HGT detection task into separate branches of salient object detection and human gaze prediction, employing a two-stage framework where human head locations must first be detected and then be fed into the next gaze target prediction sub-network. In contrast, we redefine the HGT detection task as detecting human head locations and their gaze targets, simultaneously. By this way, our method, named Human-Gaze-Target detection TRansformer or HGTTR, streamlines the HGT detection pipeline by eliminating all other additional components. HGTTR reasons about the relations of salient objects and human gaze from the global image context. Moreover, unlike existing two-stage methods that require human head locations as input and can predict only one human's gaze target at a time, HGTTR can directly predict the locations of all people and their gaze targets at one time in an end-to-end manner. The effectiveness and robustness of our proposed method are verified with extensive experiments on the two standard benchmark datasets, GazeFollowing and VideoAttentionTarget. Without bells and whistles, HGTTR outperforms existing state-of-the-art methods by large margins (6.4 mAP gain on GazeFollowing and 10.3 mAP gain on VideoAttentionTarget) with a much simpler architecture.

Citations (55)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube