Emergent Mind

Abstract

Recently, there is a revival of interest in low-rank matrix completion-based unsupervised learning through the lens of dual-graph regularization, which has significantly improved the performance of multidisciplinary machine learning tasks such as recommendation systems, genotype imputation and image inpainting. While the dual-graph regularization contributes a major part of the success, computational costly hyper-parameter tunning is usually involved. To circumvent such a drawback and improve the completion performance, we propose a novel Bayesian learning algorithm that automatically learns the hyper-parameters associated with dual-graph regularization, and at the same time, guarantees the low-rankness of matrix completion. Notably, a novel prior is devised to promote the low-rankness of the matrix and encode the dual-graph information simultaneously, which is more challenging than the single-graph counterpart. A nontrivial conditional conjugacy between the proposed priors and likelihood function is then explored such that an efficient algorithm is derived under variational inference framework. Extensive experiments using synthetic and real-world datasets demonstrate the state-of-the-art performance of the proposed learning algorithm for various data analysis tasks.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.