Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Speaker Embedding-aware Neural Diarization: an Efficient Framework for Overlapping Speech Diarization in Meeting Scenarios (2203.09767v2)

Published 18 Mar 2022 in cs.SD, cs.LG, cs.MM, and eess.AS

Abstract: Overlapping speech diarization has been traditionally treated as a multi-label classification problem. In this paper, we reformulate this task as a single-label prediction problem by encoding multiple binary labels into a single label with the power set, which represents the possible combinations of target speakers. This formulation has two benefits. First, the overlaps of target speakers are explicitly modeled. Second, threshold selection is no longer needed. Through this formulation, we propose the speaker embedding-aware neural diarization (SEND) framework, where a speech encoder, a speaker encoder, two similarity scorers, and a post-processing network are jointly optimized to predict the encoded labels according to the similarities between speech features and speaker embeddings. Experimental results show that SEND has a stable learning process and can be trained on highly overlapped data without extra initialization. More importantly, our method achieves the state-of-the-art performance in real meeting scenarios with fewer model parameters and lower computational complexity.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.