Investigating Compounding Prediction Errors in Learned Dynamics Models (2203.09637v1)
Abstract: Accurately predicting the consequences of agents' actions is a key prerequisite for planning in robotic control. Model-based reinforcement learning (MBRL) is one paradigm which relies on the iterative learning and prediction of state-action transitions to solve a task. Deep MBRL has become a popular candidate, using a neural network to learn a dynamics model that predicts with each pass from high-dimensional states to actions. These "one-step" predictions are known to become inaccurate over longer horizons of composed prediction - called the compounding error problem. Given the prevalence of the compounding error problem in MBRL and related fields of data-driven control, we set out to understand the properties of and conditions causing these long-horizon errors. In this paper, we explore the effects of subcomponents of a control problem on long term prediction error: including choosing a system, collecting data, and training a model. These detailed quantitative studies on simulated and real-world data show that the underlying dynamics of a system are the strongest factor determining the shape and magnitude of prediction error. Given a clearer understanding of compounding prediction error, researchers can implement new types of models beyond "one-step" that are more useful for control.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.