Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Developing a Successful Bomberman Agent (2203.09608v1)

Published 17 Mar 2022 in cs.AI and cs.NE

Abstract: In this paper, we study AI approaches to successfully play a 2-4 players, full information, Bomberman variant published on the CodinGame platform. We compare the behavior of three search algorithms: Monte Carlo Tree Search, Rolling Horizon Evolution, and Beam Search. We present various enhancements leading to improve the agents' strength that concern search, opponent prediction, game state evaluation, and game engine encoding. Our top agent variant is based on a Beam Search with low-level bit-based state representation and evaluation function heavy relying on pruning unpromising states based on simulation-based estimation of survival. It reached the top one position among the 2,300 AI agents submitted on the CodinGame arena.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.