Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal schemes for combinatorial query problems with integer feedback (2203.09496v4)

Published 17 Mar 2022 in math.CO, cs.IT, and math.IT

Abstract: A query game is a pair of a set $Q$ of queries and a set $\mathcal{F}$ of functions, or codewords $f:Q\rightarrow \mathbb{Z}.$ We think of this as a two-player game. One player, Codemaker, picks a hidden codeword $f\in \mathcal{F}$. The other player, Codebreaker, then tries to determine $f$ by asking a sequence of queries $q\in Q$, after each of which Codemaker must respond with the value $f(q)$. The goal of Codebreaker is to uniquely determine $f$ using as few queries as possible. Two classical examples of such games are coin-weighing with a spring scale, and Mastermind, which are of interest both as recreational games and for their connection to information theory. In this paper, we will present a general framework for finding short solutions to query games. As applications, we give new self-contained proofs of the query complexity of variations of the coin-weighing problems, and prove new results that the deterministic query complexity of Mastermind with $n$ positions and $k$ colors is $\Theta(n \log k/ \log n + k)$ if only black-peg information is provided, and $\Theta(n \log k / \log n + k/n)$ if both black- and white-peg information is provided. In the deterministic setting, these are the first up to constant factor optimal solutions to Mastermind known for any $k\geq n{1-o(1)}$.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Anders Martinsson (43 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.