Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

AdaSplats: Adaptive Splatting of Point Clouds for Accurate 3D Modeling and Real-time High-Fidelity LiDAR Simulation (2203.09155v4)

Published 17 Mar 2022 in cs.RO

Abstract: LiDAR sensors provide rich 3D information about their surrounding{s} and are becoming increasingly important for autonomous vehicles tasks such as {localization}, semantic segmentation, object detection, and tracking. {Simulation} accelerates the testing, validation, and deployment of autonomous vehicles while {also} reducing cost and eliminating the risks of testing in real-world scenarios. We address the problem of high-fidelity LiDAR simulation and present a pipeline that leverages real-world point clouds acquired by mobile mapping systems. Point-based geometry representations, more specifically splats {(2D oriented disks with normals)}, have proven their ability to accurately model the underlying surface in large point clouds{, mainly with uniform density}. We introduce an adaptive splat generation method that accurately models the underlying 3D geometry {to handle real-world point clouds with variable densities}, especially for thin structures. Moreover, we introduce a {fast} LiDAR {sensor} simulator, {working} in the splatted model, {that leverages} the GPU parallel architecture with an acceleration structure while focusing on efficiently handling large point clouds. We test our LiDAR simulation in real-world conditions, showing qualitative and quantitative results compared to basic splatting and meshing techniques, demonstrating the interest of our modeling technique.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.