Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Global Convergence of MAML and Theory-Inspired Neural Architecture Search for Few-Shot Learning (2203.09137v1)

Published 17 Mar 2022 in cs.LG, cs.CV, and stat.ML

Abstract: Model-agnostic meta-learning (MAML) and its variants have become popular approaches for few-shot learning. However, due to the non-convexity of deep neural nets (DNNs) and the bi-level formulation of MAML, the theoretical properties of MAML with DNNs remain largely unknown. In this paper, we first prove that MAML with over-parameterized DNNs is guaranteed to converge to global optima at a linear rate. Our convergence analysis indicates that MAML with over-parameterized DNNs is equivalent to kernel regression with a novel class of kernels, which we name as Meta Neural Tangent Kernels (MetaNTK). Then, we propose MetaNTK-NAS, a new training-free neural architecture search (NAS) method for few-shot learning that uses MetaNTK to rank and select architectures. Empirically, we compare our MetaNTK-NAS with previous NAS methods on two popular few-shot learning benchmarks, miniImageNet, and tieredImageNet. We show that the performance of MetaNTK-NAS is comparable or better than the state-of-the-art NAS method designed for few-shot learning while enjoying more than 100x speedup. We believe the efficiency of MetaNTK-NAS makes itself more practical for many real-world tasks.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.