Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Survey of Multi-Tenant Deep Learning Inference on GPU (2203.09040v3)

Published 17 Mar 2022 in cs.DC and cs.AR

Abstract: Deep Learning (DL) models have achieved superior performance. Meanwhile, computing hardware like NVIDIA GPUs also demonstrated strong computing scaling trends with 2x throughput and memory bandwidth for each generation. With such strong computing scaling of GPUs, multi-tenant deep learning inference by co-locating multiple DL models onto the same GPU becomes widely deployed to improve resource utilization, enhance serving throughput, reduce energy cost, etc. However, achieving efficient multi-tenant DL inference is challenging which requires thorough full-stack system optimization. This survey aims to summarize and categorize the emerging challenges and optimization opportunities for multi-tenant DL inference on GPU. By overviewing the entire optimization stack, summarizing the multi-tenant computing innovations, and elaborating the recent technological advances, we hope that this survey could shed light on new optimization perspectives and motivate novel works in future large-scale DL system optimization.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.