Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

CtlGAN: Few-shot Artistic Portraits Generation with Contrastive Transfer Learning (2203.08612v2)

Published 16 Mar 2022 in cs.CV and cs.GR

Abstract: Generating artistic portraits is a challenging problem in computer vision. Existing portrait stylization models that generate good quality results are based on Image-to-Image Translation and require abundant data from both source and target domains. However, without enough data, these methods would result in overfitting. In this work, we propose CtlGAN, a new few-shot artistic portraits generation model with a novel contrastive transfer learning strategy. We adapt a pretrained StyleGAN in the source domain to a target artistic domain with no more than 10 artistic faces. To reduce overfitting to the few training examples, we introduce a novel Cross-Domain Triplet loss which explicitly encourages the target instances generated from different latent codes to be distinguishable. We propose a new encoder which embeds real faces into Z+ space and proposes a dual-path training strategy to better cope with the adapted decoder and eliminate the artifacts. Extensive qualitative, quantitative comparisons and a user study show our method significantly outperforms state-of-the-arts under 10-shot and 1-shot settings and generates high quality artistic portraits. The code will be made publicly available.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets