Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards Practical Certifiable Patch Defense with Vision Transformer (2203.08519v1)

Published 16 Mar 2022 in cs.CV, cs.AI, and cs.CR

Abstract: Patch attacks, one of the most threatening forms of physical attack in adversarial examples, can lead networks to induce misclassification by modifying pixels arbitrarily in a continuous region. Certifiable patch defense can guarantee robustness that the classifier is not affected by patch attacks. Existing certifiable patch defenses sacrifice the clean accuracy of classifiers and only obtain a low certified accuracy on toy datasets. Furthermore, the clean and certified accuracy of these methods is still significantly lower than the accuracy of normal classification networks, which limits their application in practice. To move towards a practical certifiable patch defense, we introduce Vision Transformer (ViT) into the framework of Derandomized Smoothing (DS). Specifically, we propose a progressive smoothed image modeling task to train Vision Transformer, which can capture the more discriminable local context of an image while preserving the global semantic information. For efficient inference and deployment in the real world, we innovatively reconstruct the global self-attention structure of the original ViT into isolated band unit self-attention. On ImageNet, under 2% area patch attacks our method achieves 41.70% certified accuracy, a nearly 1-fold increase over the previous best method (26.00%). Simultaneously, our method achieves 78.58% clean accuracy, which is quite close to the normal ResNet-101 accuracy. Extensive experiments show that our method obtains state-of-the-art clean and certified accuracy with inferring efficiently on CIFAR-10 and ImageNet.

Citations (62)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.