Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Geometric reconstructions of density based clusterings (2203.08020v1)

Published 14 Mar 2022 in cs.LG, cs.DM, and stat.ML

Abstract: DBSCAN* and HDBSCAN* are well established density based clustering algorithms. However, obtaining the clusters of very large datasets is infeasible, limiting their use in real world applications. By exploiting the geometry of Euclidean space, we prove that it is possible to systematically construct the DBSCAN* and HDBSCAN* clusters of a finite $X\subset \mathbb{R}n$ from specific subsets of $X$. We are able to control the size of these subsets and therefore our results make it possible to cluster very large datasets. To illustrate our theory, we cluster the Microsoft Building Footprint Database of the US, which is not possible using the standard implementations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com