Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Investigating self-supervised learning for speech enhancement and separation (2203.07960v1)

Published 15 Mar 2022 in eess.AS

Abstract: Speech enhancement and separation are two fundamental tasks for robust speech processing. Speech enhancement suppresses background noise while speech separation extracts target speech from interfering speakers. Despite a great number of supervised learning-based enhancement and separation methods having been proposed and achieving good performance, studies on applying self-supervised learning (SSL) to enhancement and separation are limited. In this paper, we evaluate 13 SSL upstream methods on speech enhancement and separation downstream tasks. Our experimental results on Voicebank-DEMAND and Libri2Mix show that some SSL representations consistently outperform baseline features including the short-time Fourier transform (STFT) magnitude and log Mel filterbank (FBANK). Furthermore, we analyze the factors that make existing SSL frameworks difficult to apply to speech enhancement and separation and discuss the representation properties desired for both tasks. Our study is included as the official speech enhancement and separation downstreams for SUPERB.

Citations (63)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.