Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Efficient Long Sequence Encoding via Synchronization (2203.07644v1)

Published 15 Mar 2022 in cs.CL

Abstract: Pre-trained Transformer models have achieved successes in a wide range of NLP tasks, but are inefficient when dealing with long input sequences. Existing studies try to overcome this challenge via segmenting the long sequence followed by hierarchical encoding or post-hoc aggregation. We propose a synchronization mechanism for hierarchical encoding. Our approach first identifies anchor tokens across segments and groups them by their roles in the original input sequence. Then inside Transformer layer, anchor embeddings are synchronized within their group via a self-attention module. Our approach is a general framework with sufficient flexibility -- when adapted to a new task, it is easy to be enhanced with the task-specific anchor definitions. Experiments on two representative tasks with different types of long input texts, NarrativeQA summary setting and wild multi-hop reasoning from HotpotQA, demonstrate that our approach is able to improve the global information exchange among segments while maintaining efficiency.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.