Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Bayesian-EUCLID: discovering hyperelastic material laws with uncertainties (2203.07422v2)

Published 14 Mar 2022 in cs.CE

Abstract: Within the scope of our recent approach for Efficient Unsupervised Constitutive Law Identification and Discovery (EUCLID), we propose an unsupervised Bayesian learning framework for discovery of parsimonious and interpretable constitutive laws with quantifiable uncertainties. As in deterministic EUCLID, we do not resort to stress data, but only to realistically measurable full-field displacement and global reaction force data; as opposed to calibration of an a priori assumed model, we start with a constitutive model ansatz based on a large catalog of candidate functional features; we leverage domain knowledge by including features based on existing, both physics-based and phenomenological, constitutive models. In the new Bayesian-EUCLID approach, we use a hierarchical Bayesian model with sparsity-promoting priors and Monte Carlo sampling to efficiently solve the parsimonious model selection task and discover physically consistent constitutive equations in the form of multivariate multi-modal probabilistic distributions. We demonstrate the ability to accurately and efficiently recover isotropic and anisotropic hyperelastic models like the Neo-Hookean, Isihara, Gent-Thomas, Arruda-Boyce, Ogden, and Holzapfel models in both elastostatics and elastodynamics. The discovered constitutive models are reliable under both epistemic uncertainties - i.e. uncertainties on the true features of the constitutive catalog - and aleatoric uncertainties - which arise from the noise in the displacement field data, and are automatically estimated by the hierarchical Bayesian model.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.