Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Solving parametric partial differential equations with deep rectified quadratic unit neural networks (2203.06973v2)

Published 14 Mar 2022 in math.NA, cs.LG, cs.NA, and math.AP

Abstract: Implementing deep neural networks for learning the solution maps of parametric partial differential equations (PDEs) turns out to be more efficient than using many conventional numerical methods. However, limited theoretical analyses have been conducted on this approach. In this study, we investigate the expressive power of deep rectified quadratic unit (ReQU) neural networks for approximating the solution maps of parametric PDEs. The proposed approach is motivated by the recent important work of G. Kutyniok, P. Petersen, M. Raslan and R. Schneider (Gitta Kutyniok, Philipp Petersen, Mones Raslan, and Reinhold Schneider. A theoretical analysis of deep neural networks and parametric pdes. Constructive Approximation, pages 1-53, 2021), which uses deep rectified linear unit (ReLU) neural networks for solving parametric PDEs. In contrast to the previously established complexity-bound $\mathcal{O}\left(d3\log_{2}{q}(1/ \epsilon) \right)$ for ReLU neural networks, we derive an upper bound $\mathcal{O}\left(d3\log_{2}{q}\log_{2}(1/ \epsilon) \right)$ on the size of the deep ReQU neural network required to achieve accuracy $\epsilon>0$, where $d$ is the dimension of reduced basis representing the solutions. Our method takes full advantage of the inherent low-dimensionality of the solution manifolds and better approximation performance of deep ReQU neural networks. Numerical experiments are performed to verify our theoretical result.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube