Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An In-Depth Study of Continuous Subgraph Matching (Complete Version) (2203.06913v1)

Published 14 Mar 2022 in cs.DB

Abstract: Continuous subgraph matching (CSM) algorithms find the occurrences of a given pattern on a stream of data graphs online. A number of incremental CSM algorithms have been proposed. However, a systematical study on these algorithms is missing to identify their advantages and disadvantages on a wide range of workloads. Therefore, we first propose to model CSM as incremental view maintenance (IVM) to capture the design space of existing algorithms. Then, we implement six representative CSM algorithms, including IncIsoMatch, SJ-Tree, Graphflow, IEDyn, TurboFlux, and SymBi, in a common framework based on IVM. We further conduct extensive experiments to evaluate the overall performance of competing algorithms as well as study the effectiveness of individual techniques to pinpoint the key factors leading to the performance differences. We obtain the following new insights into the performance: (1) existing algorithms start the search from an edge in the query graph that maps to an updated data edge, potentially leading to many invalid partial results; (2) all matching orders are based on simple heuristics, which appear ineffective at times; (3) index updates dominate the query time on some queries; and (4) the algorithm with constant delay enumeration bears significant index update cost. Consequently, no algorithm dominates the others in all cases. Therefore, we give a few recommendations based on our experiment results. In particular, the SymBi index is useful for sparse queries or long running queries. The matching orders of IEDyn and TurboFlux work well on tree queries, those of Graphflow on dense queries or when both query and data graphs are sparse, and otherwise, we recommend SymBi's matching orders.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.