Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Investigating Coverage Guided Fuzzing with Mutation Testing (2203.06910v2)

Published 14 Mar 2022 in cs.SE

Abstract: Coverage guided fuzzing (CGF) is an effective testing technique which has detected hundreds of thousands of bugs from various software applications. It focuses on maximizing code coverage to reveal more bugs during fuzzing. However, a higher coverage does not necessarily imply a better fault detection capability. Triggering a bug involves not only exercising the specific program path but also reaching interesting program states in that path. In this paper, we use mutation testing to improve CGF in detecting bugs. We use mutation scores as feedback to guide fuzzing towards detecting bugs rather than just covering code. To evaluate our approach, we conduct a well-designed experiment on 5 benchmarks. We choose the state-of-the-art fuzzing technique Zest as baseline and construct two modified techniques on it using our approach. The experimental results show that our approach can improve CGF in both code coverage and bug detection.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.