Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

RecursiveMix: Mixed Learning with History (2203.06844v1)

Published 14 Mar 2022 in cs.CV

Abstract: Mix-based augmentation has been proven fundamental to the generalization of deep vision models. However, current augmentations only mix samples at the current data batch during training, which ignores the possible knowledge accumulated in the learning history. In this paper, we propose a recursive mixed-sample learning paradigm, termed "RecursiveMix" (RM), by exploring a novel training strategy that leverages the historical input-prediction-label triplets. More specifically, we iteratively resize the input image batch from the previous iteration and paste it into the current batch while their labels are fused proportionally to the area of the operated patches. Further, a consistency loss is introduced to align the identical image semantics across the iterations, which helps the learning of scale-invariant feature representations. Based on ResNet-50, RM largely improves classification accuracy by $\sim$3.2\% on CIFAR100 and $\sim$2.8\% on ImageNet with negligible extra computation/storage costs. In the downstream object detection task, the RM pretrained model outperforms the baseline by 2.1 AP points and surpasses CutMix by 1.4 AP points under the ATSS detector on COCO. In semantic segmentation, RM also surpasses the baseline and CutMix by 1.9 and 1.1 mIoU points under UperNet on ADE20K, respectively. Codes and pretrained models are available at \url{https://github.com/megvii-research/RecursiveMix}.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.