Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Local Hadwiger's Conjecture (2203.06718v3)

Published 13 Mar 2022 in math.CO, cs.DC, and cs.DS

Abstract: We propose local versions of Hadwiger's Conjecture, where only balls of radius $\Omega(\log(v(G)))$ around each vertex are required to be $K_{t}$-minor-free. We ask: if a graph is locally-$K_{t}$-minor-free, is it $t$-colourable? We show that the answer is yes when $t \leq 5$, even in the stronger setting of list-colouring, and we complement this result with a $O(\log v(G))$-round distributed colouring algorithm in the LOCAL model. Further, we show that for large enough values of $t$, we can list-colour locally-$K_{t}$-minor-free graphs with $13\cdot \max\left{h(t),\left\lceil \frac{31}{2}(t-1) \right\rceil \right})$colours, where $h(t)$ is any value such that all $K_{t}$-minor-free graphs are $h(t)$-list-colourable. We again complement this with a $O(\log v(G))$-round distributed algorithm.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.