Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 130 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Spectral Modification Based Data Augmentation For Improving End-to-End ASR For Children's Speech (2203.06600v1)

Published 13 Mar 2022 in eess.AS and eess.SP

Abstract: Training a robust Automatic Speech Recognition (ASR) system for children's speech recognition is a challenging task due to inherent differences in acoustic attributes of adult and child speech and scarcity of publicly available children's speech dataset. In this paper, a novel segmental spectrum warping and perturbations in formant energy are introduced, to generate a children-like speech spectrum from that of an adult's speech spectrum. Then, this modified adult spectrum is used as augmented data to improve end-to-end ASR systems for children's speech recognition. The proposed data augmentation methods give 6.5% and 6.1% relative reduction in WER on children dev and test sets respectively, compared to the vocal tract length perturbation (VTLP) baseline system trained on Librispeech 100 hours adult speech dataset. When children's speech data is added in training with Librispeech set, it gives a 3.7 % and 5.1% relative reduction in WER, compared to the VTLP baseline system.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.