Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symbolic Learning to Optimize: Towards Interpretability and Scalability (2203.06578v4)

Published 13 Mar 2022 in cs.LG and cs.AI

Abstract: Recent studies on Learning to Optimize (L2O) suggest a promising path to automating and accelerating the optimization procedure for complicated tasks. Existing L2O models parameterize optimization rules by neural networks, and learn those numerical rules via meta-training. However, they face two common pitfalls: (1) scalability: the numerical rules represented by neural networks create extra memory overhead for applying L2O models, and limit their applicability to optimizing larger tasks; (2) interpretability: it is unclear what an L2O model has learned in its black-box optimization rule, nor is it straightforward to compare different L2O models in an explainable way. To avoid both pitfalls, this paper proves the concept that we can "kill two birds by one stone", by introducing the powerful tool of symbolic regression to L2O. In this paper, we establish a holistic symbolic representation and analysis framework for L2O, which yields a series of insights for learnable optimizers. Leveraging our findings, we further propose a lightweight L2O model that can be meta-trained on large-scale problems and outperformed human-designed and tuned optimizers. Our work is set to supply a brand-new perspective to L2O research. Codes are available at: https://github.com/VITA-Group/Symbolic-Learning-To-Optimize.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Wenqing Zheng (16 papers)
  2. Tianlong Chen (202 papers)
  3. Ting-Kuei Hu (7 papers)
  4. Zhangyang Wang (375 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.