Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Characterizing and Understanding Software Security Vulnerabilities in Machine Learning Libraries (2203.06502v1)

Published 12 Mar 2022 in cs.SE

Abstract: The application of ML libraries has been tremendously increased in many domains, including autonomous driving systems, medical, and critical industries. Vulnerabilities of such libraries result in irreparable consequences. However, the characteristics of software security vulnerabilities have not been well studied. In this paper, to bridge this gap, we take the first step towards characterizing and understanding the security vulnerabilities of five well-known ML libraries, including Tensorflow, PyTorch, Sickit-learn, Pandas, and Numpy. To do so, in total, we collected 596 security-related commits to exploring five major factors: 1) vulnerability types, 2) root causes, 3) symptoms, 4) fixing patterns, and 5) fixing efforts of security vulnerabilities in ML libraries. The findings of this study can assist developers in having a better understanding of software security vulnerabilities across different ML libraries and gain a better insight into their weaknesses of them. To make our finding actionable, we further developed DeepMut, an automated mutation testing tool, as a proof-of-concept application of our findings. DeepMut is designed to assess the adequacy of existing test suites of ML libraries against security-aware mutation operators extracted from the vulnerabilities studied in this work. We applied DeepMut on the Tensorflow kernel module and found more than 1k alive mutants not considered by the existing test suits. The results demonstrate the usefulness of our findings.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.