Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Varying Coefficient Linear Discriminant Analysis for Dynamic Data (2203.06371v3)

Published 12 Mar 2022 in stat.ME and cs.LG

Abstract: Linear discriminant analysis (LDA) is an important classification tool in statistics and machine learning. This paper investigates the varying coefficient LDA model for dynamic data, with Bayes' discriminant direction being a function of some exposure variable to address the heterogeneity. We propose a new least-square estimation method based on the B-spline approximation. The data-driven discriminant procedure is more computationally efficient than the dynamic linear programming rule \citep{jiang2020dynamic}. We also establish the convergence rates for the corresponding estimation error bound and the excess misclassification risk. The estimation error in $L_2$ distance is optimal for the low-dimensional regime and is near optimal for the high-dimensional regime. Numerical experiments on synthetic data and real data both corroborate the superiority of our proposed classification method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yajie Bao (14 papers)
  2. Yuyang Liu (27 papers)

Summary

We haven't generated a summary for this paper yet.