Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

MDT-Net: Multi-domain Transfer by Perceptual Supervision for Unpaired Images in OCT Scan (2203.06363v2)

Published 12 Mar 2022 in eess.IV and cs.CV

Abstract: Deep learning models tend to underperform in the presence of domain shifts. Domain transfer has recently emerged as a promising approach wherein images exhibiting a domain shift are transformed into other domains for augmentation or adaptation. However, with the absence of paired and annotated images, models merely learned by adversarial loss and cycle consistency loss could result in poor consistency of anatomy structures during the translation. Additionally, the complexity of learning multi-domain transfer could significantly increase with the number of target domains and source images. In this paper, we propose a multi-domain transfer network, named MDT-Net, to address the limitations above through perceptual supervision. Specifically, our model consists of a single encoder-decoder network and multiple domain-specific transfer modules to disentangle feature representations of the anatomy content and domain variance. Owing to this architecture, the model could significantly reduce the complexity when the translation is conducted among multiple domains. To demonstrate the performance of our method, we evaluate our model qualitatively and quantitatively on RETOUCH, an OCT dataset comprising scans from three different scanner devices (domains). Furthermore, we take the transfer results as additional training data for fluid segmentation to prove the advantage of our model indirectly, i.e., in the task of data adaptation and augmentation. Experimental results show that our method could bring universal improvement in these segmentation tasks, which demonstrates the effectiveness and efficiency of MDT-Net in multi-domain transfer.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.