Papers
Topics
Authors
Recent
2000 character limit reached

PseudoProp: Robust Pseudo-Label Generation for Semi-Supervised Object Detection in Autonomous Driving Systems (2203.05983v2)

Published 11 Mar 2022 in cs.CV

Abstract: Semi-supervised object detection methods are widely used in autonomous driving systems, where only a fraction of objects are labeled. To propagate information from the labeled objects to the unlabeled ones, pseudo-labels for unlabeled objects must be generated. Although pseudo-labels have proven to improve the performance of semi-supervised object detection significantly, the applications of image-based methods to video frames result in numerous miss or false detections using such generated pseudo-labels. In this paper, we propose a new approach, PseudoProp, to generate robust pseudo-labels by leveraging motion continuity in video frames. Specifically, PseudoProp uses a novel bidirectional pseudo-label propagation approach to compensate for misdetection. A feature-based fusion technique is also used to suppress inference noise. Extensive experiments on the large-scale Cityscapes dataset demonstrate that our method outperforms the state-of-the-art semi-supervised object detection methods by 7.4% on mAP75.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.