Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Block-Sparse Adversarial Attack to Fool Transformer-Based Text Classifiers (2203.05948v1)

Published 11 Mar 2022 in cs.CL and cs.LG

Abstract: Recently, it has been shown that, in spite of the significant performance of deep neural networks in different fields, those are vulnerable to adversarial examples. In this paper, we propose a gradient-based adversarial attack against transformer-based text classifiers. The adversarial perturbation in our method is imposed to be block-sparse so that the resultant adversarial example differs from the original sentence in only a few words. Due to the discrete nature of textual data, we perform gradient projection to find the minimizer of our proposed optimization problem. Experimental results demonstrate that, while our adversarial attack maintains the semantics of the sentence, it can reduce the accuracy of GPT-2 to less than 5% on different datasets (AG News, MNLI, and Yelp Reviews). Furthermore, the block-sparsity constraint of the proposed optimization problem results in small perturbations in the adversarial example.

Citations (8)

Summary

We haven't generated a summary for this paper yet.