Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning for Wireless Dynamics (2203.05874v1)

Published 11 Mar 2022 in cs.IT and math.IT

Abstract: This paper aims to predict radio channel variations over time by deep learning from channel observations without knowledge of the underlying channel dynamics. In next-generation wideband cellular systems, multicarrier transmission for higher data rate leads to the high-resolution predicting problem. By leveraging recent advances of deep learning in high-resolution image processing, we propose a purely data-driven deep learning (DL) approach to predicting high-resolution temporal evolution of wideband radio channels. In order to investigate the effect of architectural design choices, we develop and study three deep learning prediction models, namely, baseline, image completion, and next-frame prediction models using UNet. Numerical results show that the proposed DL approach achieves a 52% lower prediction error than the traditional approach based on the Kalman filter (KF) in mean absolute errors. To quantify impact of channel aging and prediction on precoding performance, we also evaluate the performance degradation due to outdated and predicted channel state information (CSI) compared to perfect CSI. Our simulations show that the proposed DL approach can reduce the performance loss due to channel aging by 71% through adapting precoding vector to changes in radio channel while the traditional KF approach only shows a 27% reduction.

Citations (1)

Summary

We haven't generated a summary for this paper yet.