Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

No Free Lunch Theorem for Security and Utility in Federated Learning (2203.05816v3)

Published 11 Mar 2022 in cs.LG

Abstract: In a federated learning scenario where multiple parties jointly learn a model from their respective data, there exist two conflicting goals for the choice of appropriate algorithms. On one hand, private and sensitive training data must be kept secure as much as possible in the presence of \textit{semi-honest} partners, while on the other hand, a certain amount of information has to be exchanged among different parties for the sake of learning utility. Such a challenge calls for the privacy-preserving federated learning solution, which maximizes the utility of the learned model and maintains a provable privacy guarantee of participating parties' private data. This article illustrates a general framework that a) formulates the trade-off between privacy loss and utility loss from a unified information-theoretic point of view, and b) delineates quantitative bounds of privacy-utility trade-off when different protection mechanisms including Randomization, Sparsity, and Homomorphic Encryption are used. It was shown that in general \textit{there is no free lunch for the privacy-utility trade-off} and one has to trade the preserving of privacy with a certain degree of degraded utility. The quantitative analysis illustrated in this article may serve as the guidance for the design of practical federated learning algorithms.

Citations (55)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube