Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Distributed $\mathcal{H}^2$-matrices for boundary element methods (2203.05665v1)

Published 10 Mar 2022 in math.NA, cs.MS, and cs.NA

Abstract: Standard discretization techniques for boundary integral equations, e.g., the Galerkin boundary element method, lead to large densely populated matrices that require fast and efficient compression techniques like the fast multipole method or hierarchical matrices. If the underlying mesh is very large, running the corresponding algorithms on a distributed computer is attractive, e.g., since distributed computers frequently are cost-effective and offer a high accumulated memory bandwidth. Compared to the closely related particle methods, for which distributed algorithms are well-established, the Galerkin discretization poses a challenge, since the supports of the basis functions influence the block structure of the matrix and therefore the flow of data in the corresponding algorithms. This article introduces distributed $\mathcal{H}2$-matrices, a class of hierarchical matrices that is closely related to fast multipole methods and particularly well-suited for distributed computing. While earlier efforts required the global tree structure of the $\mathcal{H}2$-matrix to be stored in every node of the distributed system, the new approach needs only local multilevel information that can be obtained via a simple distributed algorithm, allowing us to scale to significantly larger systems. Experiments show that this approach can handle very large meshes with more than $130$ million triangles efficiently.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube