Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Koopman Methods for Estimation of Animal Motions over Unknown Submanifolds (2203.05646v2)

Published 10 Mar 2022 in stat.ML and cs.LG

Abstract: This paper introduces a data-dependent approximation of the forward kinematics map for certain types of animal motion models. It is assumed that motions are supported on a low-dimensional, unknown configuration manifold $Q$ that is regularly embedded in high dimensional Euclidean space $X:=\mathbb{R}d$. This paper introduces a method to estimate forward kinematics from the unknown configuration submanifold $Q$ to an $n$-dimensional Euclidean space $Y:=\mathbb{R}n$ of observations. A known reproducing kernel Hilbert space (RKHS) is defined over the ambient space $X$ in terms of a known kernel function, and computations are performed using the known kernel defined on the ambient space $X$. Estimates are constructed using a certain data-dependent approximation of the Koopman operator defined in terms of the known kernel on $X$. However, the rate of convergence of approximations is studied in the space of restrictions to the unknown manifold $Q$. Strong rates of convergence are derived in terms of the fill distance of samples in the unknown configuration manifold, provided that a novel regularity result holds for the Koopman operator. Additionally, we show that the derived rates of convergence can be applied in some cases to estimates generated by the extended dynamic mode decomposition (EDMD) method. We illustrate characteristics of the estimates for simulated data as well as samples collected during motion capture experiments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.