Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

PLATO: Predicting Latent Affordances Through Object-Centric Play (2203.05630v3)

Published 10 Mar 2022 in cs.RO

Abstract: Constructing a diverse repertoire of manipulation skills in a scalable fashion remains an unsolved challenge in robotics. One way to address this challenge is with unstructured human play, where humans operate freely in an environment to reach unspecified goals. Play is a simple and cheap method for collecting diverse user demonstrations with broad state and goal coverage over an environment. Due to this diverse coverage, existing approaches for learning from play are more robust to online policy deviations from the offline data distribution. However, these methods often struggle to learn under scene variation and on challenging manipulation primitives, due in part to improperly associating complex behaviors to the scene changes they induce. Our insight is that an object-centric view of play data can help link human behaviors and the resulting changes in the environment, and thus improve multi-task policy learning. In this work, we construct a latent space to model object affordances -- properties of an object that define its uses -- in the environment, and then learn a policy to achieve the desired affordances. By modeling and predicting the desired affordance across variable horizon tasks, our method, Predicting Latent Affordances Through Object-Centric Play (PLATO), outperforms existing methods on complex manipulation tasks in both 2D and 3D object manipulation simulation and real world environments for diverse types of interactions. Videos can be found on our website: https://tinyurl.com/4u23hwfv

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.