Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Evaluating Elements of Web-based Data Enrichment for Pseudo-Relevance Feedback Retrieval (2203.05420v1)

Published 10 Mar 2022 in cs.IR

Abstract: In this work, we analyze a pseudo-relevance retrieval method based on the results of web search engines. By enriching topics with text data from web search engine result pages and linked contents, we train topic-specific and cost-efficient classifiers that can be used to search test collections for relevant documents. Building upon attempts initially made at TREC Common Core 2018 by Grossman and Cormack, we address questions of system performance over time considering different search engines, queries, and test collections. Our experimental results show how and to which extent the considered components affect the retrieval performance. Overall, the analyzed method is robust in terms of average retrieval performance and a promising way to use web content for the data enrichment of relevance feedback methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.