Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Stable Parametrization of Continuous and Piecewise-Linear Functions (2203.05261v1)

Published 10 Mar 2022 in math.NA and cs.NA

Abstract: Rectified-linear-unit (ReLU) neural networks, which play a prominent role in deep learning, generate continuous and piecewise-linear (CPWL) functions. While they provide a powerful parametric representation, the mapping between the parameter and function spaces lacks stability. In this paper, we investigate an alternative representation of CPWL functions that relies on local hat basis functions. It is predicated on the fact that any CPWL function can be specified by a triangulation and its values at the grid points. We give the necessary and sufficient condition on the triangulation (in any number of dimensions) for the hat functions to form a Riesz basis, which ensures that the link between the parameters and the corresponding CPWL function is stable and unique. In addition, we provide an estimate of the $\ell_2\rightarrow L_2$ condition number of this local representation. Finally, as a special case of our framework, we focus on a systematic parametrization of $\mathbb{R}d$ with control points placed on a uniform grid. In particular, we choose hat basis functions that are shifted replicas of a single linear box spline. In this setting, we prove that our general estimate of the condition number is optimal. We also relate our local representation to a nonlocal one based on shifts of a causal ReLU-like function.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.