Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

LineVD: Statement-level Vulnerability Detection using Graph Neural Networks (2203.05181v2)

Published 10 Mar 2022 in cs.CR and cs.SE

Abstract: Current machine-learning based software vulnerability detection methods are primarily conducted at the function-level. However, a key limitation of these methods is that they do not indicate the specific lines of code contributing to vulnerabilities. This limits the ability of developers to efficiently inspect and interpret the predictions from a learnt model, which is crucial for integrating machine-learning based tools into the software development workflow. Graph-based models have shown promising performance in function-level vulnerability detection, but their capability for statement-level vulnerability detection has not been extensively explored. While interpreting function-level predictions through explainable AI is one promising direction, we herein consider the statement-level software vulnerability detection task from a fully supervised learning perspective. We propose a novel deep learning framework, LineVD, which formulates statement-level vulnerability detection as a node classification task. LineVD leverages control and data dependencies between statements using graph neural networks, and a transformer-based model to encode the raw source code tokens. In particular, by addressing the conflicting outputs between function-level and statement-level information, LineVD significantly improve the prediction performance without vulnerability status for function code. We have conducted extensive experiments against a large-scale collection of real-world C/C++ vulnerabilities obtained from multiple real-world projects, and demonstrate an increase of 105\% in F1-score over the current state-of-the-art.

Citations (138)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube