Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

OpenTAL: Towards Open Set Temporal Action Localization (2203.05114v1)

Published 10 Mar 2022 in cs.CV

Abstract: Temporal Action Localization (TAL) has experienced remarkable success under the supervised learning paradigm. However, existing TAL methods are rooted in the closed set assumption, which cannot handle the inevitable unknown actions in open-world scenarios. In this paper, we, for the first time, step toward the Open Set TAL (OSTAL) problem and propose a general framework OpenTAL based on Evidential Deep Learning (EDL). Specifically, the OpenTAL consists of uncertainty-aware action classification, actionness prediction, and temporal location regression. With the proposed importance-balanced EDL method, classification uncertainty is learned by collecting categorical evidence majorly from important samples. To distinguish the unknown actions from background video frames, the actionness is learned by the positive-unlabeled learning. The classification uncertainty is further calibrated by leveraging the guidance from the temporal localization quality. The OpenTAL is general to enable existing TAL models for open set scenarios, and experimental results on THUMOS14 and ActivityNet1.3 benchmarks show the effectiveness of our method. The code and pre-trained models are released at https://www.rit.edu/actionlab/opental.

Citations (25)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (3)