Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Heterogeneous Sparse Matrix-Vector Multiplication via Compressed Sparse Row Format (2203.05096v4)

Published 10 Mar 2022 in cs.DC, cs.DS, and cs.PF

Abstract: Sparse matrix-vector multiplication (SpMV) is one of the most important kernels in high-performance computing (HPC), yet SpMV normally suffers from ill performance on many devices. Due to ill performance, SpMV normally requires special care to store and tune for a given device. Moreover, HPC is facing heterogeneous hardware containing multiple different compute units, e.g., many-core CPUs and GPUs. Therefore, an emerging goal has been to produce heterogeneous formats and methods that allow critical kernels, e.g., SpMV, to be executed on different devices with portable performance and minimal changes to format and method. This paper presents a heterogeneous format based on CSR, named CSR-k, that can be tuned quickly and outperforms the average performance of Intel MKL on Intel Xeon Platinum 8380 and AMD Epyc 7742 CPUs while still outperforming NVIDIA's cuSPARSE and Sandia National Laboratories' KokkosKernels on NVIDIA A100 and V100 for regular sparse matrices, i.e., sparse matrices where the number of nonzeros per row has a variance $\leq$ 10, such as those commonly generated from two and three-dimensional finite difference and element problems. In particular, CSR-k achieves this with reordering and by grouping rows into a hierarchical structure of super-rows and super-super-rows that are represented by just a few extra arrays of pointers. Due to its simplicity, a model can be tuned for a device and used to select super-row and super-super-rows sizes in constant time.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.