Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Adaptive Trajectory Prediction via Transferable GNN (2203.05046v2)

Published 9 Mar 2022 in cs.CV

Abstract: Pedestrian trajectory prediction is an essential component in a wide range of AI applications such as autonomous driving and robotics. Existing methods usually assume the training and testing motions follow the same pattern while ignoring the potential distribution differences (e.g., shopping mall and street). This issue results in inevitable performance decrease. To address this issue, we propose a novel Transferable Graph Neural Network (T-GNN) framework, which jointly conducts trajectory prediction as well as domain alignment in a unified framework. Specifically, a domain-invariant GNN is proposed to explore the structural motion knowledge where the domain-specific knowledge is reduced. Moreover, an attention-based adaptive knowledge learning module is further proposed to explore fine-grained individual-level feature representations for knowledge transfer. By this way, disparities across different trajectory domains will be better alleviated. More challenging while practical trajectory prediction experiments are designed, and the experimental results verify the superior performance of our proposed model. To the best of our knowledge, our work is the pioneer which fills the gap in benchmarks and techniques for practical pedestrian trajectory prediction across different domains.

Citations (60)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.