Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Energy plus maximum bound preserving Runge-Kutta methods for the Allen-Cahn equation (2203.04784v1)

Published 9 Mar 2022 in math.NA and cs.NA

Abstract: It is difficult to design high order numerical schemes which could preserve both the maximum bound property (MBP) and energy dissipation law for certain phase field equations. Strong stability preserving (SSP) Runge-Kutta methods have been developed for numerical solution of hyperbolic partial differential equations in the past few decades, where strong stability means the non-increasing of the maximum bound of the underlying solutions. However, existing framework of SSP RK methods can not handle nonlinear stabilities like energy dissipation law. The aim of this work is to extend this SSP theory to deal with the nonlinear phase field equation of the Allen-Cahn type which typically satisfies both maximum bound preserving (MBP) and energy dissipation law. More precisely, for Runge-Kutta time discretizations, we first derive a general necessary and sufficient condition under which MBP is satisfied; and we further provide a necessary condition under which the MBP scheme satisfies energy dissipation.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.