Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Language Adaptive Cross-lingual Speech Representation Learning with Sparse Sharing Sub-networks (2203.04583v1)

Published 9 Mar 2022 in eess.AS and cs.SD

Abstract: Unsupervised cross-lingual speech representation learning (XLSR) has recently shown promising results in speech recognition by leveraging vast amounts of unlabeled data across multiple languages. However, standard XLSR model suffers from language interference problem due to the lack of language specific modeling ability. In this work, we investigate language adaptive training on XLSR models. More importantly, we propose a novel language adaptive pre-training approach based on sparse sharing sub-networks. It makes room for language specific modeling by pruning out unimportant parameters for each language, without requiring any manually designed language specific component. After pruning, each language only maintains a sparse sub-network, while the sub-networks are partially shared with each other. Experimental results on a downstream multilingual speech recognition task show that our proposed method significantly outperforms baseline XLSR models on both high resource and low resource languages. Besides, our proposed method consistently outperforms other adaptation methods and requires fewer parameters.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.