Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Computing Continuous Dynamic Time Warping of Time Series in Polynomial Time (2203.04531v4)

Published 9 Mar 2022 in cs.CG

Abstract: Dynamic Time Warping is arguably the most popular similarity measure for time series, where we define a time series to be a one-dimensional polygonal curve. The drawback of Dynamic Time Warping is that it is sensitive to the sampling rate of the time series. The Fr\'echet distance is an alternative that has gained popularity, however, its drawback is that it is sensitive to outliers. Continuous Dynamic Time Warping (CDTW) is a recently proposed alternative that does not exhibit the aforementioned drawbacks. CDTW combines the continuous nature of the Fr\'echet distance with the summation of Dynamic Time Warping, resulting in a similarity measure that is robust to sampling rate and to outliers. In a recent experimental work of Brankovic et al., it was demonstrated that clustering under CDTW avoids the unwanted artifacts that appear when clustering under Dynamic Time Warping and under the Fr\'echet distance. Despite its advantages, the major shortcoming of CDTW is that there is no exact algorithm for computing CDTW, in polynomial time or otherwise. In this work, we present the first exact algorithm for computing CDTW of one-dimensional curves. Our algorithm runs in time $O(n5)$ for a pair of one-dimensional curves, each with complexity at most $n$. In our algorithm, we propagate continuous functions in the dynamic program for CDTW, where the main difficulty lies in bounding the complexity of the functions. We believe that our result is an important first step towards CDTW becoming a practical similarity measure between curves.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.