Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Structural Learning of Simple Staged Trees (2203.04390v1)

Published 8 Mar 2022 in stat.ML and cs.LG

Abstract: Bayesian networks faithfully represent the symmetric conditional independences existing between the components of a random vector. Staged trees are an extension of Bayesian networks for categorical random vectors whose graph represents non-symmetric conditional independences via vertex coloring. However, since they are based on a tree representation of the sample space, the underlying graph becomes cluttered and difficult to visualize as the number of variables increases. Here we introduce the first structural learning algorithms for the class of simple staged trees, entertaining a compact coalescence of the underlying tree from which non-symmetric independences can be easily read. We show that data-learned simple staged trees often outperform Bayesian networks in model fit and illustrate how the coalesced graph is used to identify non-symmetric conditional independences.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.