Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Formation Control of Nonlinear Multi-Agent Systems Using Three-Layer Neural Networks (2203.04381v1)

Published 8 Mar 2022 in eess.SY and cs.SY

Abstract: This paper considers a leader-following formation control problem for heterogeneous, second-order, uncertain, input-affine, nonlinear multi-agent systems modeled by a directed graph. A tunable, three-layer neural network (NN) is proposed with an input layer, two hidden layers, and an output layer to approximate an unknown nonlinearity. Unlike commonly used trial and error efforts to select the number of neurons in a conventional NN, in this case an \textit{a priori} knowledge allows one to set up the number of neurons in each layer. The NN weights tuning laws are derived using the Lyapunov theory. The leader-following and formation control problems are addressed by a robust integral of the sign of the error (RISE) feedback and a NN-based control. The RISE feedback term compensates for unknown leader dynamics and the unknown, bounded disturbance in the agent error dynamics. The NN-based term compensates for the unknown nonlinearity in the dynamics of multi-agent systems, and semi-global asymptotic tracking results are rigorously proven using the Lyapunov stability theory. The results of the paper are compared with two previous results to evaluate the efficiency and performance of the proposed method.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.